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Overview

What is this talk about

Main question: Study of computational complexity over continuous
variable systems such as Bosonic systems.

Bosonic systems = Infinite-dim systems = Continous-variable systems

We consider two settings:

1 Dynamics

2 Ground state problem
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Motivation

Motivation

Many physical systems are continuous variables.

Position and momenta
Oscillators (e.g., LC circuits)
E.M. amplitudes
Solving molecular structures
Q.F.T.

Bosonic computational devices

Computation over real numbers
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Discrete v.s. continuous variables

Discrete v.s. continuous variables

DV CV
Qbits/ Qdits

(Spins, polarization)

Qmodes
(Position, Momentum, Particle number)

Unit vectors in Cd Unit vectors in C∞

(e.q. Square integrable functions)

Observables have
discrete and bounded spectra

Observables may
have bounded, unbounded,

discrete or continuous spectra

Clifford/non-Clifford Gaussian/non-Gaussian

Quantum complexity classes
(BQP, QMA, etc)

??? (this talk)
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CV Formalism

Quantum states

We can view quantum states in different basis

Position basis: ψ ∈ L2(R)

ψ(x),

∫
R
|ψ(x)|2dx = 1,

or momentum basis via Fourier transform!
Particle number (Fock) basis:1 |ψ⟩ ∈ ℓ2(C)

|ψ⟩ =
∑
n≥0

αn |n⟩ ,
∑
n≥0

|αn|2 = 1

where {|n⟩ , n ≥ 0} is known as the Fock or particle number basis.

Coherent states

|z⟩ = e−|z|2/2
∑
n≥0

zn√
n!

|n⟩ , z ∈ C

1
ψ(x) =

∑
n≥0 αnHn(x), Hn Hermite polynomials.
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CV Formalism

Unbounded operators

Position (X ) and momentum (P) have continuous eigenbasis

X |x⟩ = x |x⟩ , x ∈ R, P |p⟩ = p |p⟩ , p ∈ R

with algebra
[X ,P] = iI

They are Fourier dual!

Particle number: N = 1
2 (X

2 + P2 − I ) has discrete spectrum

N |n⟩ = n |n⟩ , n ≥ 0.

Multiple modes: Oj is operator O on mode j .
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CV Formalism

Gaussian gates

Consider polynomial hamiltonians H of deg k in (X1, . . . ,P1, . . .), H = H†.

U = e iH is a Gaussian unitary if hamiltonian H has deg ≤ 2 in Xi and Pj

Displacement e i(aX+bP)

Rotation e iθN

Squeezing e ir(XP+PX )

Passive linear optical elements: Beam splitters and phase shifters.

A quantum state |ψ⟩ is called Gaussian if |ψ⟩ = U |0⟩ for Gaussian U.

A specific Gaussian gate is F = e i
π
4 (X

2+P2) which is called Fourier transform
because

FXF−1 = P, FPF−1 = −X ,
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CV Formalism

Gaussian gates

Gaussian operations are easy to represent:
If U is Gaussian

Single mode:

U = Rotation× Displacement× Squeezing

Multiple modes:

U = V
⊗
i

GiW

V ,W are passive linear optical and Gi are single mode Gaussian

Theorem

Starting with Gaussian states, Gaussian circuits can be efficiently simulated in
polynomial time.

This can be viewed as a CV generalization of the Gottesman-Knill theorem for
(DV) Clifford circuits.
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CV Formalism

Stellar rank

For a CV quantum state |ψ⟩ ∈ C∞, we can assign a Holomorphic
“stellar” function

Fψ(z) = e
|z|2
2 ⟨z∗|ψ⟩

Normalization:
∫
C |Fψ(z)|2dµ(z) = 1, where dµ(z) = e−|z|2

π d2z is the
Gaussian measure.

Any stellar function can be decomposed as

Fψ(z) = Pr (z)× G (z).

where G (z) is a Gaussian function and P is a polynomial of degree
0 ≤ r ≤ ∞
r is called the stellar rank of |ψ⟩. It measures “non-Gaussianity”.

Saeed Mehraban (Tufts University) ITCS 2025 arXiv:2410.04274 9 / 16

https://arxiv.org/abs/2410.04274


CV Formalism

Multimode non-Gaussian hierarchy

Multiple systems

Gaussian states
Stellar rank = 0

…1 2 3 ∞4ez

ez2

1Vacuum state

Coherent state

Squeezed state

Fock statesz z2
z3

NOON state

Two-mode  
squeezed state

ez1z2
zn1 + zn2

Cat state

GKP state

cos z

ϑ(z, − 2π)

(1 + z)n

Binomial state

Non-Gaussian states
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Complexity of dynamics

Gaussian dynamics

We mentioned Gaussian computations can be simulated in polynomial
time. But what is the precise complexity?

Definition

GDC is the class of decision problems that can be solved in Logspace if we
can sample from Logspace uniform Gaussian computations.

Theorem (This work)

GDC = BQL.

Proof idea: Reduce from inverting well-conditioned matrices.
This can be viewed as a generalization of a result of Aaronson and
Gottesman that Clifford’s computations are equivalent to ⊕L.

Saeed Mehraban (Tufts University) ITCS 2025 arXiv:2410.04274 11 / 16

https://arxiv.org/abs/2410.04274


Complexity of dynamics

non-Gaussian dynamics

By adding a non-Gaussian gate such as e iX
3/3, the model becomes very difficult

to represent.

Definition

Let U be a unitary circuit of size s in cubic and Gaussian gates. Starting with the
vacuum state:

1 Amplitude estimation: Estimate the probability of measuring the vacuum
in the output.

2 Observable estimation: Estimate the expectation value of an observable
with constant degree.

Due to the infinite-dimensional setting, it is not a priori clear whether we would
get a decidable model.
For DV computations, both tasks can be done in complexity class #P.
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Complexity of dynamics

non-Gaussian dynamics

We observe that under cubic gates observables grow extremely fast, but still
with a bounded rate.

P
X 3/3−−−→ P + X 2 F−→ −X + P2 X 3/3−−−→ −X + (P + X 2)2

If we continue this t rounds we get repeated squaring, i.e., the leading
term would be X 2t .

The expected number of particles in the system may grow doubly
exponentially fast!

Theorem (This work)

If U is a multi-mode circuit with t cubic gates with poly(t) size, then the

expected particle number of the quantum state U |0⟩ is at most 22
O(t)

.

This implies that the Hilbert space can be truncated to doubly exponential size,
which implies an upper bound of EEXP on both tasks.
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Complexity of dynamics

non-Gaussian dynamics

Can we do better? We can indeed:

Theorem (This work)

Amplitude estimation can be done in EXPSPACE. Observable estimation can be
done in PSPACE.

Proof idea: We apply depth reduction techniques.
Question: Why can we do much better on the second task?

Observable estimation can be viewed as estimating ⟨0|U−1OU |0⟩.

We may hope to reduce amplitude est to observable est via O = |0⟩ ⟨0|

|0⟩ ⟨0| has an infinite degree in X and P, and it is not clear how one would
cut it off without getting divergence.
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Complexity of the ground state problem

The ground state problem

Let χN
r be the family of states with stellar rank ≤ r and energy ≤ N.

Definition (CVLHE
r )

Let H be a Hamiltonian of constant degree k ≥ 4, let EN
r = Infx∈χN

r
⟨x |H |x⟩.

Given the promise that either EN
r ≥ a or ≤ a− 1/poly(|H|) decide which one is

the case.

We show

Theorem (This work; Complexity of CVLHN
r )

State family Complexity of CVLH
r = 0,N ≤ exp NP-complete
r ,N ≤ poly ⊆ QMA
No boundsa RE-hard

Furthermore the problem of deciding boundedness of Hamiltonianss is generally
undecidable. When k = 4 and we restrict the family to Gaussians, it is NP-hard.

a
k ≥ 8
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Open problems

Open problems

Lower bounds!

CV Solovay Kitaev?

Adding dissipation

Implications to physics

Establishing trade-offs between time, space, and precision.

Thank you!
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